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ABSTRACT

Multiresolution time domain (MRTD) analysis is

applied to model anisotropic dielectric material. In

particular, an MRTD scheme based on scaling func-

tions only is used to analyze different types of res-

onant cavity structures. The results agree very well

with those obtained by FDTD, FEM and integral

equation met hods. MRTD allows for considerable

savings in memory and computational time in com-

parison to FDTD, while maintaining the same ac-

curacy of the results.

INTRODUCTION

The method of moments is a mathematically cor-

rect approach for the discretization of integral and

partial differential equations. It has been shown in

[1] that the method can be used to derive Yee’s

FDTD scheme using pulse functions for the expan-

sion of the unknown fields. Since the method of mo-

ments allows for the use of a complete set of or-

thonormal basis functions, it is possible to derive

time domain schemes based on the expansion of the

fields in scaling and wavelet functions and based on

multiresolution analysis, respectively [2, 3]. These

multiresolution time domain(MRTD) schemes have

highly linear dispersion characteristics, allowing

MRTD to provide excellent accuracy in electromag-

netic computation for discretizations close to the

Nyquist limit. MRTD exhibits significant improve-

ments over FDTD and good convergence with FEM

and IE methods in calculating resonant frequencies

and field patterns.

MODELLING ANISOTROPIC

DIELECTRIC MATERIAL

To model anisotropic dielectric material we separate

Maxwell’s first vector equation in:

(1)

and

D=c(F1t)E , (2)

where D represents the electric flux vector and

.e(F, t) the space– and time–dependent permittiv-

ity tensor. These equations can be discretized us-

ing scaling and pulse functions in space and time

domain as expansion factors in the method of mo-

ments [3]. The use of non–localized basis functions

cannot accommodate localized boundary conditions

and cannot allow for a localized modelling of the

material properties. To overcome this difficulty, the

image principle is used to model perfect electric

boundary conditions, as described below. As for the

description of material parameters, the constitutive

relations are discretized accordingly so that the re-

lationships between the electric/magnetic flux and

the electric/magnetic field are given by matrix equa-

tions.

In the principal coordinate system, the permittiv-

ity tensor .s for symmetric media is given by

[

&z(F,t)
&(F, t)= o

0

In this case, eq. (2)

three scalar cartesian

D, =

: ..(i)]~‘3)mq/(F, t)

may be written

equations ~

cO(F, t) Ex

in the form of

(4)
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Dy = &g(F, t) Ey (5)

D. = s.(P, t) E. (6)

The discretization of eqs. (4), (5) and (6) for field

expansions using only scaling functions in space do-

main is discussed in

C(F, t) =

yields

+03
@

kDl+l/2,m,n ‘z

[3]. Assuming

e(z) &(y) E(z) c(t) (7)

‘f~){+l/2,1+1/2’ ‘f~)m,m’
k’,l’, m’,n’=–m

$&r

‘f.z)n, n’ ‘~t)k, k’ k’E[’+1/2,m’,n’
, (8)

4.where the epsilon coefficients &(K)~,m~ and &~*)k k!

are integrals given by

&t:)m,m’ =
/

& om(~) cz(~) dm’(~) d~ (9)

and

1
‘~t)k,k’ = ~ Jh~(t)Cr(t)hk,(t)dt , (lo)

with K = (z, y, z). The functions @~(K) are

Battle- Lemarie scaling functions and hk (t) are pulse

functions. The indices 1, m, n and k are the discrete

space and time indices related to the space and time

coordinates via x = lAz, y = mAy, z = nAz and

t = kAt, where Ax, Ay, Az and At represent the

space and time discretization intervals in z–, g–, z–

and t–direction.

ANALYSIS OF RESONANT

CAVITY STRUCTURE

For the evaluation of the integrals (9), we use

a simple representation of the scaling function in

terms of cubic spline functions [3]. The first struc-

ture in our analysis is a resonant cavity that is filled

one-quarter with a dielectric material(see Fig. 1).

The cavity has the dimensions lm x 2m x 1.5m,

and the dielectric material has a relative dielectric

constant equal to 64. Note that for this structure it

is only necessary to calculate the epsilon coefficients

for the y-direction, since the structure is homoge-

neous with respect to the x– and z– directions, The

electric field components tangential to the dielec-

tric interface, k, E~~,,n, and k, E$~m, ,n, are related

to kD~m,n and kD~m,n by the tangential epsilon(c)

4X and E
coefficients ‘(v)

~~1 respectively. Additionally,

the electric field component normal to the dielectric

interface k, Ef’n, ~, is related to k! D~m, ,n, by the

4Y To model the structurenormal (.5) coefficient :(Y).

in Figure 1 the image principle is applied, thus re-

placing the structure in Figure 1 by the structures

shown in Figures 2 and 3 respectively. The tangen-

tial E coefficients now relate ten k, Efm, ,., compo-

nents to ten k D~m,n components through a 10 x 10

matrix. The image principle applies odd symmetry

of the tangential electric fields. Thus the five tangen-

tial electric field components in the image resonator

are linearly dependent on the five tangential electric

field components in the original resonator. This al-

lows the elimination of the field components in the

image resonator, reducing the 10 x 10 matrix to a

5 x 5 matrix, which is used in eq. (8). Similarly, the

12 x 12 matrix of the normal c coefficient is reduced

to a 6 x 6 matrix using even symmetry for the nor-

mal electric field component. Note that a general

description of E coefficients in eq. (9) allows for an

arbitrary positioning of the dielectric interface.

The MRTD method for the structure in Figure

1 at a discretization of 2 x 6 x 3 proved to be the

closest approximation to analytic values. This is due

to the fact that a discretization of 2 x 4 x 3 is ex-

actly at the Nyquist criterion for the variation of .s

in the y–direction (one sampling point in the dielec-

tric material). MRTD results are compared to ana-

lytic values and the results obtained by Yee’s FDTD

scheme in Table 1. The time discretization interval

At = 0.9.10- 10s was identical for both schemes.

This time discretization interval was chosen to max-

imize the linear properties of the MRTD dispersion

relation [3]. Both cases were run at 35,000 time

steps. For the analysis using Yee’s FDTD scheme,

a mesh with Ax = Ay = AZ = O.lm was used

resulting in a total number of 3000 grid points. In

the 2 x 6 x 3 analysis, a total number of 36 grid

points was used, resulting in a factor of 83 memory

improvement for MRTD. Additionally an improve-

ment of a factor of 10 in computation time was found

for the MRTD method.
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The second structure is a metallic cavity of di-

mensions 2m x 2m x 2m with a small dielectric

cube(e~ = 6) of dimensions 0.5m x 0.5m x 0.5m in

one corner of the structure. Note that it is necessary

to use tangential and normal c coefficients for the

x–,y–,z– directions. Due to symmetry, the e coeffi-

cients along each direction are ident ital. This struc-

ture was simulated using an MRTD discretization of

8 x 8 x 8 and an FDTD discretization of 60 x 60 x 60,

resulting in a memory savings of 420. The time dis-

cretization interval is At = 9.0.10- 11s for MRTD

and At = 2.0 ~10–lls for FDTD. Both cases were

run for 50,000 time steps. The first resonant fre-

quency was found to be 105.1 MHz for FDTD and

106.1 MHz for MRTD. Since FDTD has negative

and MRTD positive dispersion error [2, 3], the ana-

lytic value is between 105.1 and 106.1 MHz. Due to

the evaluation of the full three–dimensional matrix

equation (9) running time was the same for both

methods.

The third structure is a 4cm x 3cm x 2cm resonant

cavity with a dielectric perturbation in the center of

one of the faces. We define r to be the ratio between

the side of the dielectric cube and the side of the res-

onant cavity along x, y, or z (see Fig.4). An MRTD

discretization of 8 x 8 x 8 is compared with tetrahe-

dral FEM [4] and an integral equation method [5] for

r= O.15, 0.20 and 0.25. For each value of r, the time

discretization interval in MRTD is At = 3.0.10- 12s

and the number of time steps used was 60,000. Note

that the results calculated by the MRTD scheme

are compared to results derived by two conventional

frequency domain techniques. The IE/MoM method

has a discretization of 3 x 3 x 3 only in the dielec-

tric, while in FEM the whole cavity is discretized

with 1500 tetrahedrons. As can be seen in Table 2,

values derived by these techniques agree very well.

Figures 5 and 6 show plots of E@y calculated using

MRTD with a discretization of 8 x 8 x 8 for r= O.20.

Field values can be evaluated for any number of in-

termediate points. Figure 5 shows the amplitudes

of the scaling functions calculated by MRTID. Fig-

ure 6 shows field distributions using three interme-

diate points resulting in a higher field resolution of

24 x 24 x 24. The use of pulse functions in FDTD

results in only one field value per discretization cell,

while in MRTD scaling functions imply field vari-

ations within the discretization cell. This yields a

higher field resolution for a higher number of inter-

mediate points.

CONCLUSION

MRTD schemes based on orthonormal wavelet ex-

pansions have been derived and applied in the nu-

merical analysis of simple resonant cavity struct ures.

It has been shown the MRTD scheme using 13attle–

Lemarie scaling functions provides results with ex-

cellent correspondence with the FDTD, FEM and

IE methods. Compared to Yee’s FDTD scheme, our

examples suggest computer savings of two orders

with respect to memory requirements.
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Analytic (MHz] 27.290 37.136 42.343
J

FDTD ~10 x’20 x’15) 27.250 37.000 42.200

FDTD Relative Error -0.146% –0.366% -0.337%

MRTD (2 X 6 X 3) 27.370 37.370 42.420

MRTD Relative Error 0.292% 0.599% 0.299%
1 J

Table 1: Resonant Frequency data for a cavity

one–quarter filled with dielectric material
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Figure 1: Quarter-Filled Dielectric Resonator
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Figure 4: Cavity Resonator with a varying di-

electric perturbation

r IE/MoM(GHz) FEM MRTD

0.15 6.1535 6.1125 6.20

0.20 6.02 5.9125 5.9.5
1 I

0.25 I
I

5.840 5.740 5.85

Table 2: Resonant Frequencies for a resonator

with a varying dielectric perturbation
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Figure 5: Ey Field Pattern for r= O.20, MRTD

8x8x8, w/o Scaling Function Interpolation
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Figure 6: Ey Field Pattern for r= O.20, MRTD

8x8x8, w/Scaling Function Int erpolat ion
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