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ABSTRACT

Muitiresolution time domain (MRTD) analysis is
applied to model anisotropic dielectric material. In
particular, an MRTD scheme based on scaling func-
tions only is used to analyze different types of res-
onant cavity structures. The results agree very well
with those obtained by FDTD, FEM and integral
equation methods. MRTD allows for considerable
savings in memory and computational time in com-
parison to FDTD, while maintaining the same ac-
curacy of the results.

INTRODUCTION

The method of moments is a mathematically cor-
rect approach for the discretization of integral and
partial differential equations. It has been shown in
{1] that the method can be used to derive Yee’s
FDTD scheme using pulse functions for the expan-
sion of the unknown fields. Since the method of mo-
ments allows for the use of a complete set of or-
thonormal basis functions, it is possible to derive
time domain schemes based on the expansion of the
fields in scaling and wavelet functions and based on
multiresolution analysis, respectively {2, 3]. These
multiresolution time domain(MRTD) schemes have
highly linear dispersion characteristics, allowing
MRTD to provide excellent accuracy in electromag-
netic computation for discretizations close to the
Nyquist limit. MRTD exhibits significant improve-
ments over FDTD and good convergence with FEM
and IE methods in calculating resonant frequencies
and field patterns.
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MODELLING ANISOTROPIC
DIELECTRIC MATERIAL

To model anisotropic dielectric material we separate
Maxwell’s first vector equation in:

oD
VXH——&' (1)

and
D =¢e(Ft)E . 2)

where D represents the electric flux vector and
e(,t) the space- and time-dependent permittiv-
ity tensor. These equations can be discretized us-
ing scaling and pulse functions in space and time
domain as expansion factors in the method of mo-
ments [3]. The use of non-localized basis functions
cannot accomodate localized boundary conditions
and cannot allow for a localized modelling of the
material properties. To gvercome this difficulty, the
image principle i1s used to model perfect electric
boundary conditions, as described below. As for the
description of material parameters, the constitutive
relations are discretized accordingly so that the re-
lationships between the electric/magnetic flux and
the electric/magnetic field are given by matrix equa-
tions.

In the principal coordinate system, the permittiv-
ity tensor & for symmetric media is given by

£- (7 1) 0 0
e(7,t) = 0 gy(7,1) 0 . (3
0 0 e, (7, 1)

In this case, eq. (2) may be written in the form of
three scalar cartesian equations as

Dy = elFt)Es (4)
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The discretization of egs. (4), (5) and (6) for field

expansions using only scaling functions in space do-
main is discussed in [3]. Assuming

e(7,1) = e(z) e(y) e(2) (t)
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+00

>

k!, m! n'=—o0

P

— ¢z pz
I+1/2,mn = E(ao)i+1/2,141/2" E(y)mm!

-2 z oz
6(z)n,n’ E(t)k k! klEl’-}-}/Z,m’,n’

where the epsilon coeflicients E?Z)m,m' and 6@),:,,5,
are integrals given by

z 1
Gt = 3 [ B8 2(6) ) d - (©)
and
1
Eltyk bt = —[g/hk(t) ex(t) hyi(t) dt ,  (10)
with &« = (z,y,2). The functions ¢, (k) are

Battle-Lemarie scaling functions and kg (¢) are pulse
functions. The indices {, m, n and k are the discrete
space and time indices related to the space and time
coordinates via ¢ = Az, y = mAy, z = nAz and
t = kAt, where Az, Ay, Az and At represent the
space and time discretization intervals in z—, y—, z—
and t-direction.

ANALYSIS OF RESONANT
CAVITY STRUCTURE

For the evaluation of the integrals (9), we use
a simple representation of the scaling function in
terms of cubic spline functions [3]. The first struc-
ture in our analysis is a resonant cavity that is filled
one-quarter with a dielectric material(see Fig. 1).
The cavity has the dimensions 1lm x 2m x 1.5m,
and the dielectric material has a relative dielectric
constant equal to 64. Note that for this structure it
is only necessary to calculate the epsilon coeffcients
for the y—direction, since the structure is homoge-
neous with respect to the x— and z— directions. The

» (8)
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electric field components tangential to the dielec-
tric interface, k/E,d,’fm, o and k’EﬁTm' .+ are related
to qu)x

mn and kD,‘{’fn’n by the tangential epsilon(c)
coefficients sg’;) and 526;) respectively. Additionally,
the electric field component normal to the dielectric
interface xEfY., ./ is related to ker,”)’m,,n, by the
normal () coefficient E?yy). To model the structure
in Figure 1 the image principle is applied, thus re-
placing the structure in Figure 1 by the structures
shown in Figures 2 and 3 respectively. The tangen-
tial £ coefficients now relate ten ka,",)’Im,’n, compo-
nents to ten kDf,’f;,n components through a 10 x 10
matrix. The image principle applies odd symmetry
of the tangential electric fields. Thus the five tangen-
tial electric field components in the image resonator
are linearly dependent on the five tangential electric
field components in the original resonator. This al-
lows the elimination of the field components in the
image resonator, reducing the 10 x 10 matrix to a
5 x b matrix, which is used in eq. (8). Similarly, the
12 x 12 matrix of the normal ¢ coefficient is reduced
to a 6 x 6 matrix using even symmetry for the nor-
mal electric field component. Note that a general
description of € coefficients in eq. (9) allows for an
arbitrary positioning of the dielectric interface.

The MRTD method for the structure in Figure
1 at a discretization of 2 x 6 x 3 proved to be the
closest approximation to analytic values. This is due
to the fact that a discretization of 2 x 4 x 3 is ex-
actly at the Nyquist criterion for the variation of ¢
in the y—direction (one sampling point in the dielec-
tric material). MRTD results are compared to ana-
lytic values and the results obtained by Yee’s FDTD
scheme in Table 1. The time discretization interval
At = 0.9 -107'% was identical for both schemes.
This time discretization interval was chosen to max-
imize the linear properties of the MRTD dispersion
relation [3]. Both cases were run at 35,000 time
steps. For the analysis using Yee’s FDTD scheme,
a mesh with Az = Ay = Az = 0.1m was used
resulting in a total number of 3000 grid points. In
the 2 x 6 x 3 analysis, a total number of 36 grid
points was used, resulting in a factor of 83 memory
improvement for MRTD. Additionally an improve-
ment of a factor of 10 in computation time was found
for the MRTD method.



The second structure is a metallic cavity of di-
mensions 2m x 2m x 2m with a small dielectric
cube(e, = 6) of dimensions 0.5m x 0.5m x 0.5m in
one corner of the structure. Note that it 1s necessary
to use tangential and normal ¢ coefficients for the
x—,y—,z— directions. Due to symmetry, the ¢ coeffi-
cients along each direction are identical. This struc-
ture was simulated using an MRTD discretization of
8 x 8 x 8 and an FDTD discretization of 60 x 60 x 60,
resulting in a memory savings of 420. The time dis-
cretization interval is At = 9.0 - 10~!'s for MRTD
and At = 2.0 - 107!!s for FDTD. Both cases were
run for 50,000 time steps. The first resonant fre-
quency was found to be 105.1 MHz for FDTD and
106.1 MHz for MRTD. Since FDTD has negative
and MRTD positive dispersion error [2, 3], the ana-
lytic value is between 105.1 and 106.1 MHz. Due to
the evaluation of the full three-dimensional matrix
equation (9) running time was the same for both
methods.

The third structure is a 4cm x 3em x 2¢m resonant
cavity with a dielectric perturbation in the center of
one of the faces. We define r to be the ratio between
the side of the dielectric cube and the side of the res-
onant cavity along x, y, or z (see Fig.4). An MRTD
discretization of 8 x 8 x 8 is compared with tetrahe-
dral FEM [4] and an integral equation method {5] for
r=0.15, 0.20 and 0.25. For each value of r, the time
discretization interval in MRTD is At = 3.0-107!2s
and the number of time steps used was 60,000. Note
that the results calculated by the MRTD scheme
are compared to results derived by two conventional
frequency domain techniques. The IE/MoM method
has a discretization of 3 x 3 x 3 only in the dielec-
tric, while in FEM the whole cavity is discretized
with 1500 tetrahedrons. As can be seen in Table 2,
values derived by these techniques agree very well.

Figures 5 and 6 show plots of E#Y calculated using
MRTD with a discretization of 8 x 8 x 8 for r=0.20.
Field values can be evaluated for any number of in-
termediate points. Figure 5 shows the amplitudes
of the scaling functions calculated by MRTD. Fig-
ure 6 shows field distributions using three interme-
diate points resulting in a higher field resolution of
24 x 24 x 24. The use of pulse functions in FDTD
results in only one field value per discretization cell,
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while in MRTD scaling functions imply field vari-
ations within the discretization cell. This yields a
higher field resolution for a higher number of inter-
mediate points.

CONCLUSION

MRTD schemes based on orthonormal wavelet ex-
pansions have been derived and applied in the nu-
merical analysis of simple resonant cavity structures.
It has been shown the MRTD scheme using Battle-
Lemarie scaling functions provides results with ex-
cellent correspondance with the FDTD, FEM and
IE methods. Compared to Yee’s FDTD scheme, our
examples suggest computer savings of two orders
with respect to memory requirements.
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Analytic (MHz) 27.290 37.136 42.343

FDTD (10 x 20 x 15) 27.250 37.000 42.200

FDTD Relative Error | —0.146% | —0.366% | —0.337%

MRTD (2 x 6 x 3) 27.370 37.370 42.420

MRTD Relative Error | 0.292% 0.599% 0.299%

Table 1: Resonant Frequency data for a cavity
one—quarter filled with dielectric material
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Figure 1: Quarter-Filled Dielectric Resonator
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Figure 2: Tangential ¢ Components
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Figure 3: Normal ¢ Components
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Figure 4: Cavity Resonator with a varying di-
electric perturbation
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T IE/MoM(GHz) | FEM | MRTD
0.15 6.1535 6.1125 | 6.20
0.20 6.02 5.9125 | 5.95
0.25 5.840 5.740 5.85

Table 2: Resonant Frequencies for a resonator
with a varying dielectric perturbation

Figure 5: Ey Field Pattern for r=0.20, MRTD
8x8x8, w/o Scaling Function Interpolation

Figure 6: Ey Field Pattern for r=0.20, MRTD
8x8x8, w/Scaling Function Interpolation



